On the advection-diffusion equation with rough coefficients: Weak solutions and vanishing viscosity
نویسندگان
چکیده
We deal with the vanishing viscosity scheme for transport/continuity equation ∂tu+div(ub)=0 drifted by a divergence-free vector field b. Under general Sobolev assumptions on b, we show convergence of such to unique Lagrangian solution transport equation. Our proof is based use stochastic flows and yields quantitative rates convergence. This offers completely selection criterion (even beyond distributional regime) which compensates wild non-uniqueness phenomenon solutions low integrability arising from convex integration constructions, as shown in recent works [8], [28], [29], [30], rules out possibility anomalous dissipation. On étudie le schéma de viscosité évanescente pour l'équation transport/continuité associée à un champ vecteurs b qui divergence nulle. Selon des hypothèses générales du type sur nous montrons la d'un tel vers l'unique lagrangienne transport. La preuve que présentons est basée l'utilisation flux stochastiques et donne estimations quantitatives vitesse Ceci mène l'émergence critère sélection général (même au-delà régime distributionnel) compense phénomène non-unicité sauvage faible intégrabilité, ont été construites dans travaux récents [30] avec techniques d'intégration convexe. Cela exclut aussi possibilité dissipation anormale.
منابع مشابه
Results on the Diffusion Equation with Rough Coefficients
We study the behaviour of the solutions of the stationary diffusion equation as a function of a possibly rough (L8-) diffusivity. This includes the boundary behaviour of the solution maps, associating to each diffusivity the solution corresponding to some fixed source function, when the diffusivity approaches infinite values in parts of the medium. In n-dimensions, n ¥ 1, by assuming a weak not...
متن کاملAnalytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media
0022-1694/$ see front matter 2009 Elsevier B.V. A doi:10.1016/j.jhydrol.2009.11.008 * Corresponding author. Address: P-12, New Med 221005, India. Tel.: +91 9450541328. E-mail addresses: [email protected], naveen@ In the present study one-dimensional advection–diffusion equation with variable coefficients is solved for three dispersion problems: (i) solute dispersion along steady flow through...
متن کاملComputing Bounds for Linear Functionals of Exact Weak Solutions to the Advection-Diffusion-Reaction Equation
We present a cost effective method for computing quantitative upper and lower bounds on linear functional outputs of exact weak solutions to the advection-diffusion-reaction equation and we demonstrate a simple adaptive strategy by which such outputs can be computed to a prescribed precision. The bounds are computed from independent local subproblems resulting from a standard finite element app...
متن کاملWeak and Viscosity Solutions of the Fractional Laplace Equation
Aim of this paper is to show that weak solutions of the following fractional Laplacian equation { (−∆)su = f in Ω u = g in Rn \ Ω are also continuous solutions (up to the boundary) of this problem in the viscosity sense. Here s ∈ (0, 1) is a fixed parameter, Ω is a bounded, open subset of Rn (n > 1) with C2-boundary, and (−∆)s is the fractional Laplacian operator, that may be defined as (−∆)u(x...
متن کاملStochastic Solutions for the Two-Dimensional Advection-Diffusion Equation
In this paper, we solve the two-dimensional advection-diffusion equation with random transport velocity. The generalized polynomial chaos expansion is employed to discretize the equation in random space while the spectral/hp element method is used for spatial discretization. Numerical results which demonstrate the convergence of generalized polynomial chaos are presented. Specifically, it appea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2022
ISSN: ['0021-7824', '1776-3371']
DOI: https://doi.org/10.1016/j.matpur.2022.09.005